skip to main content


Search for: All records

Creators/Authors contains: "Bowie, Rauri C. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Combating the current biodiversity crisis requires the accurate documentation of population responses to human‐induced ecological change. However, our ability to pinpoint population responses to human activities is often limited to the analysis of populations studied well after the fact. Museum collections preserve a record of population responses to anthropogenic change that can provide critical baseline data on patterns of genetic diversity, connectivity, and population structure prior to the onset of human perturbation. Here, we leverage a spatially replicated time series of specimens to document population genomic responses to the destruction of nearly 90% of coastal habitats occupied by the Savannah sparrow (Passerculus sandwichensis) in California. We sequenced 219 sparrows collected from 1889 to 2017 across the state of California using an exome capture approach. Spatial–temporal analyses of genetic diversity found that the amount of habitat lost was not predictive of genetic diversity loss. Sparrow populations from southern California historically exhibited lower levels of genetic diversity and experienced the most significant temporal declines in genetic diversity. Despite experiencing the greatest levels of habitat loss, we found that genetic diversity in the San Francisco Bay area remained relatively high. This was potentially related to an observed increase in gene flow into the Bay Area from other populations. While gene flow may have minimized genetic diversity declines, we also found that immigration from inland freshwater‐adapted populations into tidal marsh populations led to the erosion of divergence at loci associated with tidal marsh adaptation. Shifting patterns of gene flow through time in response to habitat loss may thus contribute to negative fitness consequences and outbreeding depression. Together, our results underscore the importance of tracing the genomic trajectories of multiple populations over time to address issues of fundamental conservation concern.

     
    more » « less
  2. Abstract Background

    Empirical field studies allow us to view how ecological and environmental processes shape the biodiversity of our planet, but collecting samples in situ creates inherent challenges. The majority of empirical vertebrate gut microbiome research compares multiple host species against abiotic and biotic factors, increasing the potential for confounding environmental variables. To minimize these confounding factors, we focus on a single species of passerine bird found throughout the geologically complex island of Sulawesi, Indonesia. We assessed the effects of two environmental factors, geographic Areas of Endemism (AOEs) and elevation, as well as host sex on the gut microbiota assemblages of the Sulawesi Babbler,Pellorneum celebense,from three different mountains across the island. Using cloacal swabs, high-throughput-amplicon sequencing, and multiple statistical models, we identified the core microbiome and determined the signal of these three factors on microbial composition.

    Results

    The five most prevalent bacterial phyla within the gut microbiome ofP. celebensewereProteobacteria(32.6%),Actinobacteria(25.2%),Firmicutes(22.1%),Bacteroidetes(8.7%), andPlantomycetes(2.6%). These results are similar to those identified in prior studies of passeriform microbiomes. Overall, microbiota diversity decreased as elevation increased, irrespective of sex or AOE. A single ASV ofClostridiumwas enriched in higher elevation samples, while lower elevation samples were enriched with the generaPerlucidibaca(FamilyMoraxellaceae),Lachnoclostridium(FamilyLachnospiraceae), and an unidentified species in the FamilyPseudonocardiaceae.

    Conclusions

    While the core microbiota families recovered here are consistent with other passerine studies, the decreases in diversity as elevation increases has only been seen in non-avian hosts. Additionally, the increased abundance ofClostridiumat high elevations suggests a potential microbial response to lower oxygen levels. This study emphasizes the importance of incorporating multiple statistical models and abiotic factors such as elevation in empirical microbiome research, and is the first to describe an avian gut microbiome from the island of Sulawesi.

     
    more » « less
  3. Abstract

    Natural history collections provide an unparalleled resource for documenting population responses to past anthropogenic change. However, in many cases, traits measured on specimens may vary temporally in response to a number of different anthropogenic pressures or demographic processes. While teasing apart these different drivers is challenging, approaches that integrate analyses of spatial and temporal series of specimens can provide a robust framework for examining whether traits exhibit common responses to ecological variation in space and time. We applied this approach to analyze bill morphology variation in California Savannah Sparrows (Passerculus sandwichensis). We found that bill surface area increased in birds from higher salinity tidal marshes that are hotter and drier. Only the coastal subspecies,alaudinus,exhibited a significant increase in bill size through time. As with patterns of spatial variation,alaudinuspopulations occupying higher salinity tidal marshes that have become warmer and drier over the past century exhibited the greatest increases in bill surface area. We also found a significant negative correlation between bill surface area and total evaporative water loss (TEWL) and estimated that observed increases in bill size could result in a reduction of up to 16.2% in daily water losses. Together, these patterns of spatial and temporal variation in bill size were consistent with the hypothesis that larger bills are favored in freshwater‐limited environments as a mechanism of dissipating heat, reducing reliance on evaporative cooling, and increasing water conservation. With museum collections increasingly being leveraged to understand past responses to global change, this work highlights the importance of considering the influence of many different axes of anthropogenic change and of integrating spatial and temporal analyses to better understand the influence of specific human impacts on population change over time.

     
    more » « less
  4. Abstract

    Genetic structure and phenotypic variation among populations are affected by both geographic distance and environmental variation across species' distributions. Understanding the relative contributions of isolation by distance (IBD) and isolation by environment (IBE) is important for elucidating population dynamics across habitats and ecological gradients. In this study, we compared phenotypic and genetic variation among Horned Lark (Eremophila alpestris) populations from 10 sites encompassing an elevational gradient from low‐elevation desert scrub in Death Valley (285 a.s.l.) to high‐elevation meadows in the White Mountains of the Sierra Nevada of California (greater than 3000 m a.s.l.). Using a ddRAD data set of 28,474 SNPs aligned to a high‐quality reference genome, we compared genetic structure with elevational, environmental, and spatial distance to quantify how different aspects of the landscape drive genomic and phenotypic differentiation in Horned Larks. We found larger‐bodied birds were associated with sites that had less seasonality and higher annual precipitation, and longer spurs occurred in soils with more clay and silt content, less sand, and finer fragments. Larks have large neo‐sex chromosomes, and we found that associations with elevation and environmental variation were much stronger among neo‐sex chromosomes compared to autosomes. Furthermore, we found that putative chromosomal translocations, fusions, and inversions were associated with elevation and may underlie local adaptation across an elevational gradient in Horned Larks. Our results suggest that genetic variation in Horned Larks is affected more by IBD than IBE, but specific phenotypes and genomic regions—particually on neo‐sex chromosomes—bear stronger associations with the environment.

     
    more » « less
  5. Abstract

    The implementation of intelligent software to identify and classify objects and individuals in visual fields is a technology of growing importance to operatives in many fields, including wildlife conservation and management. To non-experts, the methods can be abstruse and the results mystifying. Here, in the context of applying cutting edge methods to classify wildlife species from camera-trap data, we shed light on the methods themselves and types of features these methods extract to make efficient identifications and reliable classifications. The current state of the art is to employ convolutional neural networks (CNN) encoded within deep-learning algorithms. We outline these methods and present results obtained in training a CNN to classify 20 African wildlife species with an overall accuracy of 87.5% from a dataset containing 111,467 images. We demonstrate the application of a gradient-weighted class-activation-mapping (Grad-CAM) procedure to extract the most salient pixels in the final convolution layer. We show that these pixels highlight features in particular images that in some cases are similar to those used to train humans to identify these species. Further, we used mutual information methods to identify the neurons in the final convolution layer that consistently respond most strongly across a set of images of one particular species. We then interpret the features in the image where the strongest responses occur, and present dataset biases that were revealed by these extracted features. We also used hierarchical clustering of feature vectors (i.e., the state of the final fully-connected layer in the CNN) associated with each image to produce a visual similarity dendrogram of identified species. Finally, we evaluated the relative unfamiliarity of images that were not part of the training set when these images were one of the 20 species “known” to our CNN in contrast to images of the species that were “unknown” to our CNN.

     
    more » « less
  6. Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and thatAptenodytesis the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increasedNebetween 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.

     
    more » « less
  7. Abstract

    Human activities shape resources available to wild animals, impacting diet and probably altering their microbiota and overall health. We examined drivers shaping microbiota profiles of common cranes (Grus grus) in agricultural habitats by comparing gut microbiota and crane movement patterns (GPS‐tracking) over three periods of their migratory cycle, and by analysing the effect of artificially supplemented food provided as part of a crane‐agriculture management programme. We sampled faecal droppings in Russia (nonsupplemented, premigration) and in Israel in late autumn (nonsupplemented, postmigration) and winter (supplemented and nonsupplemented, wintering). As supplemented food is typically homogenous, we predicted lower microbiota diversity and different composition in birds relying on supplementary feeding. We did not observe changes in microbial diversity with food supplementation, as diversity differed only in samples from nonsupplemented wintering sites. However, both food supplementation and season affected bacterial community composition and led to increased abundance of specific genera (mostly Firmicutes). Cranes from the nonsupplemented groups spent most of their time in agricultural fields, probably feeding on residual grain when available, while food‐supplemented cranes spent most of their time at the feeding station. Thus, nonsupplemented and food‐supplemented diets probably diverge only in winter, when crop rotation and depletion of anthropogenic resources may lead to a more variable diet in nonsupplemented sites. Our results support the role of diet in structuring bacterial communities and show that they undergo both seasonal and human‐induced shifts. Movement analyses provide important clues regarding host diet and behaviour towards understanding how human‐induced changes shape the gut microbiota in wild animals.

     
    more » « less
  8. Abstract

    In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.

     
    more » « less
  9. The presence of two undescribed cisticola warblers in the marshes of the Kilombero floodplain in central Tanzania has been known since the 1980s and these putative new species have been illustrated in field guides on African birds, although with no formal name. Here we name both species, based on two museum specimens collected in 1961 and recently detected in a museum collection. We use these specimens to provide formal descriptions of each form and, using DNA sequence data extracted from these specimens, we place them in a broad phylogenetic framework for the genusCisticola. The phylogenetic placement indicates that one of the new species is nested within a group of plain‐backed duetting cisticolas and the other within the streak‐backed marsh cisticolas. We use our own and public recordings to characterize the vocal repertoire of each of these new species and compare song characteristics with other members of their respective clades. Dating of nodes in the molecular phylogeny suggests that both cisticolas endemic to the Kilombero became isolated and diverged from their sister‐species between 2.5 and 3.5 million years ago, long after the formation of the Eastern Arc Mountains and the Malawi Rift. We propose that both species should be classified as globally endangered, owing to immense anthropogenic pressures on the floodplain, as documented in several publications and by a recent Ramsar Advisory Mission.

     
    more » « less
  10. Abstract

    Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free‐ranging barn swallows (Hirundo rustica) by studying co‐occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within‐host microbial richness (α‐diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (β‐diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance ofMycoplasmaspp. andCorynebacteriumspp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance ofSalmonellaspp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.

     
    more » « less